Package: irtoys (via r-universe)

August 26, 2024

Type Package

Title A Collection of Functions Related to Item Response Theory (IRT)

Version 0.2.2

Date 2022-05-11

Maintainer Ivailo Partchev <partchev@gmail.com>

Description A collection of functions useful in learning and practicing IRT, which can be combined into larger programs. Provides basic CTT analysis, a simple common interface to the estimation of item parameters in IRT models for binary responses with three different programs (ICL, BILOG-MG, and ltm), ability estimation (MLE, BME, EAP, WLE, plausible values), item and person fit statistics, scaling methods (MM, MS, Stocking-Lord, and the complete Hebaera method), and a rich array of parametric and non-parametric (kernel) plots. Estimates and plots Haberman's interaction model when all items are dichotomously scored.

LazyLoad yes

LazyData yes

License GPL (≥ 2)

Depends sm, ltm

Suggests MASS, knitr, rmarkdown

Collate 'ability.R' 'estimate.R' 'itemfit.R' 'nonpar.R' 'readin.R' 'scale.R' 'tracelines.R' 'utils.R' 'irtoys-package.R' 'interaction.R'

VignetteBuilder knitr

RoxygenNote 7.1.1

NeedsCompilation yes

Author Ivailo Partchev [aut, cre], Gunter Maris [aut], Tamaki Hattori [ctb]

Date/Publication 2022-05-12 09:50:02 UTC

Repository https://irtools.r-universe.dev

Contents

RemoteUrl https://github.com/cran/irtoysRemoteRef HEADRemoteSha a0364e6d4434c69b5ffa32205b0e38a65e5bccd3

Contents

irtoys-package	3
ability	4
api	5
b1	6
b2	6
b3	6
dpv	7
eap	8
erf	9
est	9
iif	12
interactionModel	13
irf	14
irfPlot	15
itf	16
mlebme	19
normal.qu	20
npp	21
plot.iif	22
plot.imp	23
plot.irf	24
plot.tif	25
plot.trf	26
qrs	27
read.ip.bilog	28
read.ip.icl	28
read.qu.icl	29
read.resp	30
rim	31
sca	32
sco	33
Scored	34
Scored2pl	34
scoreMetric	35
scp	35
sim	36
tet	37
tgf	37
tia	39
tif	40
trf	41

2

irtoys-package

																																									45
wle	•	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	43
Unscored	•																																								43
tsc	•		•				•														•		•									•	•								42

Index

irtoys-package

Estimate and plot IRT models for binary responses

Description

Package:	irtoys
Type:	Package
Version:	0.2.0
Date:	2016-01-30
License:	GPL (>= 2)
LazyLoad:	yes
LazyData:	yes

Details

The irtoys package contains a bunch of functions potentially useful to those teaching or learning Item Response Theory (IRT). R being particularly good at graphics, there is a rich array of plotting functions to visualize IRT models or assess their fit. Ability estimates can be estimated by MLE, BME, EAP, WLE. Various IRT scaling methods are supported: MM, MS, Stocking-Lord, and Hebaera. Last not least, irtoys may be the only package to estimate Haberman's interaction model, although a new and more powerful package is in the making.

Currently, there are several R packages that can estimate the item parameters in various uni- and multidimensional IRT models, but only several years ago one had to use stand-alone programs that had wildly different and often unwieldy user interfaces. Besides, no single program does everything one needs. One of the original purposes of irtoys was to provide a simple and unified interface to some of the most basic functions in ICL, BILOG, and R's own ltm, such that beginners could concentrate on learning IRT rather than syntaxes. Once that these steps have been made, those wishing to take advantage of the full functionality of ICL, BILOG & Co. must still master the syntax of their program of choice.

To take full advantage of irtoys, some IRT software is needed. Package ltm is automatically loaded. ICL by Brad Hanson can be downloaded from his site, http://www.openirt.com/b-a-h/software/. Executables and a very detailed manual (not needed to use ICL with irtoys are provided for Windows, Linux, and Macintosh. The Mac version probably does not work with the current OS versions but I still use the Windows and Linux versions without any problem.

BILOG is commercial software sold by SSI — see https://ssicentral.com/ for further detail.

On Windows, make sure that the executable files (icl.exe for ICL, BLM1.EXE, BLM2.EXE, and BLM3.EXE for BILOG) are located in a directory that is included in the PATH variable. On Linux,

BILOG, being a Windows program, is run with wine, and should also be on a path where wine can find it. On my machine, I have simply put the three files in ~/.wine/drive_c/windows/. It seems that new versions of wine expect them to be explicitly tagged as executable. On Macintosh, at least ltm should work in all cases.

NOTE: Starting with version 0.2.0, function est returns a list of three elements: est contains the parameter estimates and is thus identical to the output in earlier versions, se contains the standard errors, in a similar format, and vcm contains the variance-covariance matrices (NULL when using ICL). When passing item parameters to another function that only needs the estimates, irf(ip) and irf(ip\$est) can be used interchangeably. This facilitates using simulated item parameters. A function that does require the complete object is .

Also, function it f now returns item fit statistics as a vector rather than a list. Finally, since most of the functions in irtoys have been written with the "logistic" metric in mind (i.e., $a_j(\theta_i - b_j)$) rather than $1.7a_i^*(\theta_i - b_j)$, function est now estimates item parameters only in the logistic metric.

Author(s)

Ivailo Partchev <partchev@gmail.com>

References

S. E. Embretson and S. P. Reise (2000), Item Response Theory for Psychologists, Lawrence Erlbaum Associates, Mahwah, NJ

ability

Estimate ability

Description

A wrapper around all functions for ability estimation

Usage

```
ability(resp, ip, method = "WLE", mu = 0, sigma = 1, n = 5)
```

Arguments

resp	A matrix of responses: persons as rows, items as columns, entries are either 0 or 1, no missing data
ip	Item parameters: the object returned by est.
method	One of: "MLE", "BME", "WLE", "EAP", "PV", "QRS", "SUM"
mu	Mean of the apriori distribution when applicable
sigma	Standard deviation of the apriori distribution when applicable $method="ML"$. Default is 1.
n	The number of plausible values to draw for each person (default is 5).

api

Value

Depends on the method.

Author(s)

Ivailo Partchev

See Also

mlebme, eap, wle, dpv, qrs

Examples

theta <- ability(resp=Scored, method="WLE", ip=Scored2pl)</pre>

api

The api appropriateness index

Description

Computes the api appropriateness index, a measure of person fit in IRT models

Usage

api(resp, ip, theta)

Arguments

resp	A matrix of responses: persons as rows, items as columns, entries are either 0 or 1, no missing data
ip	Item parameters: the object returned by est, or its first part.
theta	A measure of ability, typically produced with mlebme, wle etc. If missing, ML estimates will be computed automatically.

Value

A vector of length equal to the number of rows in resp, containing the appropriateness indices

Author(s)

Ivailo Partchev

References

Drasgow, F., Levine, M. V., & Williams, E. A. (1985). Appropriateness measurement with polychotomous item response models and standardized indices. British Journal of Mathematical and Statistical Psychology, 38, 67–80

Examples

api(Scored, Scored2pl)

b1

Example item parameters 1PL (Bilog)

Description

Item parameter estimates for the 1PL model, estimated with bilog from the example data set Scored. These are provided because not users will have BILOG-MG available.

Format

The object returned by est

b2

Example item parameters 2PL (Bilog)

Description

Item parameter estimates for the 2PL model, estimated with bilog from the example data set Scored. These are provided because not users will have BILOG-MG available.

Format

The object returned by est

b3

Example item parameters 3PL (Bilog)

Description

Item parameter estimates for the 3PL model, estimated with bilog from the example data set Scored. These are provided because not users will have BILOG-MG available.

Format

The object returned by est

Draws (by rejection sampling) plausible values from the posterior distribution of ability

Usage

dpv(resp, ip, mu = 0, sigma = 1, n = 5)

Arguments

resp	A matrix of responses: persons as rows, items as columns, entries are either 0 or 1, no missing data
ip	Item parameters: the object returned by est.
mu	Mean of the apriori distribution. Default is 0.
sigma	Standard deviation of the apriori distribution. Ignored when $method="ML"$. Default is 1.
n	The number of plausible values to draw for each person (default is 5).

Value

A matrix with n columns

Author(s)

Ivailo Partchev

See Also

mlebme, eap

Examples

plval <- dpv(resp=Scored, ip=Scored2pl)</pre>

dpv

Estimates the expectation of the posterior distribution of the latent variable ("ability") for each person.

Usage

eap(resp, ip, qu)

Arguments

resp	A matrix of responses: persons as rows, items as columns, entries are either 0 or 1, no missing data
ip	Item parameters: the object returned by est.
qu	A quadrature object produced with normal.qu or read in with read.qu.icl

Value

A matrix with the ability estimates in column 1, and their standard errors of measurement (SEM) in column 2, and the number of non-missing reponses in column 3

Author(s)

Ivailo Partchev

See Also

mlebme, normal.qu, read.qu.icl

Examples

th.eap <- eap(resp=Scored, ip=Scored2pl, qu=normal.qu())</pre>

eap

Produces a plot of the empirical response function (proportion of correct responses at each possible sum score).

Usage

erf(resp, item)

Arguments

resp	A matrix of binary responses to a test, with persons as rows and items as columns.
item	The item (column number in resp) to plot.

Value

None

Author(s)

Ivailo Partchev

Examples

erf(Scored, 3)

est

Estimate item parameters

Description

Estimate IRT item parameters using either ICL, BILOG, or 1tm. Provides access to the most widely used options in these programs.

erf

Usage

```
est(
  resp,
  model = "2PL",
  engine = "icl",
  omitsWrong = FALSE,
  nqp = 20,
  est.distr = FALSE,
  nch = 5,
  a.prior = TRUE,
  b.prior = FALSE,
  c.prior = TRUE,
  bilog.defaults = TRUE,
  rasch = FALSE,
  run.name = "mymodel"
)
```

Arguments

resp	A matrix of responses: persons as rows, items as columns, entries are either 0 or 1, no missing data
model	The IRT model: "1PL", "2PL", or "3PL". Default is "2PL".
engine	One of "icl", "bilog", or "ltm". Default is "icl".
omitsWrong	If TRUE, all omitted items will be recoded as wrong responses, otherwise they will be treated as missing (default)
nqp	Number of quadrature points. Default is 20.
est.distr	T if the probabilities of the latent distribution are to be estimated, F if a normal distribution is assumed. Default is F. Ignored when engine="ltm".
nch	Number of choices in the original item formulation. Used to determine the prior for the asymptote when engine="bilog", model="3PL", and c.prior=T. Default is 5.
a.prior	Whether a prior for the item discriminations is used. Ignored when model="1PL" or engine="1tm". Default is T.
b.prior	Whether a prior for the item difficulties is used. Ignored when engine="ltm". Default is F.
c.prior	Whether a prior for the asymptotes is used. Ignored when model="1PL" or model="2PL" or engine="1tm". Default is T.
bilog.defaults	When engine="icl" and a prior is used, use the default priors in BILOG rather than the default priors in ICL. Ignored when engine="ltm". Default is T.
rasch	When engine="bilog" and model="1PL" and "rasch"=T, the common value for discriminations is forced to 1, and the sum of the difficulties is 0. When engine="1tm" and model="1PL" and "rasch"=T, the common value for discriminations is forced to 1. Ignored in all other cases. Default is F.
run.name	A (short) string used in the names of all files read or written by ICL or BILOG. Default is "mymodel". Change to something else to keep the outputs of ICL of BILOG for further use. Ignored when engine="ltm"

10

est

Estimate the parameters of an IRT model defined in the most general case ("3PL") as

$$P(U_{ij} = 1 | \theta_i, a_j, b_j, c_j) = c_j + (1 - c_j) \frac{\exp(a_j(\theta_i - b_j))}{1 + \exp(a_j(\theta_i - b_j))}$$

where U_{ij} is a binary response given by person *i* to item *j*, θ_i is the value of the latent variable ("ability") for person *i*, a_j is the discrimination parameter for item *j*, b_j is the difficulty parameter for item *j*, c_j is the asymptote for item *j*.

Some authors prefer to represent the model with a logit $1.7a_j^*(\theta_i - b_j)$ rather than $a_j(\theta_i - b_j)$. This option has been removed from irroys as it is not supported by the remaining functions of the package.

In the 2PL model (model="2PL"), all asymptotes c_j are 0. In the 1PL model (model="1PL"), all asymptotes c_j are 0 and the discriminations a_j are equal for all items (and sometimes to 1).

Package irtoys provides a simple common interface to the estimation of item parameters with three different programs. It only accesses the most basic and widely used options in these programs. Each of the three programs has a much wider choice of options and cababilities, and serious users must still learn the corresponding syntax in order to access the advanced features. Even when models are fit "by hand", irtoys may be useful in plotting results, doing comparisons across programs etc.

Estimation of the more complex IRT models (2PL and 3PL) for some "difficult" data sets often has to use prior distributions for the item parameters. irtoys adopts the default behaviour of BILOG: no priors for b in any model, priors for a in the 2PL and 3PL models, priors for c in the 3PL model. This can be overriden by changing the values of a prior, b.prior, and c.prior.

If priors are used at all, they will be the same for all items. Note that both ICL and BILOG can, at some additional effort, set different priors for any individual item. At default, the common priors are the BILOG defaults: normal(0, 2) for *b*, lognormal (0, 0.5) for *a*, and beta(20*p+1, 20(1-p)+1) for *c*; *p* is 1 over the number of choices in the original item formulations, which can be set with the parameter nch, and is again assumed the same for all items.

When engine="icl" and bilog.defaults=F, any priors used will be the ICL default ones, and based on the 4-parameter beta distribution: beta(1.01, 1.01, -6, 6) for *b*, beta(1.75, 3, 0, 3) for *a*, and beta(3.5, 4, 0, 0.5) for *c*. When engine="ltm", all commands involving priors are ignored.

est only works when some IRT software is installed. Package ltm is automatically loaded. ICL can be downloaded from http://www.openirt.com/b-a-h/software/. BILOG is commercial software sold by SSI — see https://ssicentral.com/ for further detail. On Windows, make sure that the executable files (icl.exe for ICL, blm1.exe, blm2.exe, and blm3.exe, for BILOG) are located in directories that are included in the PATH variable.

Value

A list with three elements: est and se are matrices containing the parameter estimates and their standard errors, correspondingly. Each matrix has three columns: [,1] item discrimination a, [,2] item difficulty b, and [,3] asymptote c. For the 1PL and 2PL models, all asymptotes are equal to 0; for the 1PL, the discriminations are all equal but not necessarily equal to 1. The third element, vcm, is a list of variance-covariance matrices for the item parameters. Currently, vcm is only used in function irfPlot. When ICL is used as estimation engine, se and vcm are NULL as ICL does not compute standard errors for the item parameter estimates.

12

Author(s)

Ivailo Partchev

Examples

```
p.1pl <- est(Scored, model="1PL", engine="1tm")
p.2pl <- est(Scored, model="2PL", engine="1tm")</pre>
```

iif

Item information function

Description

The item information function (IIF) for the 3PL model can be computed as

$$I(\theta) = a^2 \frac{Q(\theta)}{P(\theta)} \left[\frac{P(\theta) - c}{1 - c} \right]^2,$$

where θ is the value of the latent variable for a person, a is the discrimination parameter for the item, P is the IRF for the person and item, and Q = 1 - P. For the 1PL and 2PL models, the expression reduces to $a^2 PQ$.

Usage

iif(ip, items = NULL, x = NULL)

Arguments

ip	Item parameters: the output of est, or a 3-column matrix corresponding to its first element, est.
items	The item(s) for which the information function is computed. If NULL (the default), irf for all items will be returned
x	The values of the latent variable (θ in the equation above), at which the IIF will be evaluated. If not given, 99 values spaced evenly between -4 and +4 will be used, handy for plotting.

Details

A common use of this function would be to obtain a plot of the IIF.

Value

A list of:	
x	A copy of the argument x
f	A matrix containing the IIF values: persons (values of (x) as rows and items as columns

interactionModel

Author(s)

Ivailo Partchev

See Also

plot.iif, irf

Examples

```
plot(iif(Scored2pl, items=1:3))
```

interactionModel Interaction model

Description

Estimates the parameters of the interaction model. The plots can be produced with the appropriate plotting method.

Usage

interactionModel(x, eps = 0.1, rasch = FALSE)

Arguments

Х	A matrix of responses: persons as rows, items as columns, entries are either 0 or 1, no missing data
eps	Convergence criterion, default is 1e-1
rasch	if TRUE, the Rasch model will be estimated instead.

Value

A matrix

Author(s)

Ivailo Partchev, using C code and theory by Gunter Maris

References

Shelby Haberman. The interaction model. Chapter in: Mathias von Davier & Claus H. Carstensen (Eds.) (2007). Multivariate and Mixture Distribution Rasch Models. New York:Springer

Returns the item response function of the 3PL (1PL, 2PL) model, the i.e. the probabilities defined by

$$P(U_{ij} = 1 | \theta_i, a_j, b_j, c_j) = c_j + (1 - c_j) \frac{\exp(a_j(\theta_i - b_j))}{1 + \exp(a_j(\theta_i - b_j))}$$

where U_{ij} is a binary response given by person *i* to item *j*, θ_i is the value of the latent variable ("ability") for person *i*, a_j is the discrimination parameter for item *j*, b_j is the difficulty parameter for item *j*, c_j is the asymptote for item *j*. Some authors call the IRF "the item characteristic curve".

Usage

irf(ip, items = NULL, x = NULL)

Arguments

ip	Item parameters: the output of est, or a 3-column matrix corresponding to its first element, est.
items	The item(s) for which irf is computed. If NULL (the default), irf for all items will be returned
x	The values of the latent variable (θ in the equation above), at which the IRF will be evaluated. If not given, 99 values spaced evenly between -4 and +4 will be used, handy for plotting.

Details

In the 2PL model (model="2PL"), all asymptotes c_j are 0. In the 1PL model (model="1PL"), all asymptotes c_j are 0 and the discriminations a_j are equal for all items (and sometimes to 1).

A common use of this function would be to obtain a plot of the IRF.

Value

A list of:

x	A copy of the argument x
f	A matrix containing the IRF values: persons (values of (x) as rows and items as columns

Author(s)

Ivailo Partchev

irf

irfPlot

See Also

plot.irf

Examples

plot(irf(Scored2pl, item=1))

irfPlot

Item fit plot

Description

Produces a plot that compares the estimated trace line (item response function) for an item with the data. The data is represented with a non-parametric trace line computed as in tgf (not npp). Approximate confidence intervals for the parametric line are also shown.

Usage

```
irfPlot(
  resp,
  ip,
  x = NULL,
  item,
  main = "Parametric vs non-parametric trace line",
  use.sm = FALSE
)
```

Arguments

resp	A matrix of responses: persons as rows, items as columns, entries are either 0 or 1, no missing data
ip	Item parameters: the object returned by function est – note that the complete object is required since the standard errors play an important part.
x	A vector of abilities, as long as there are persons, against which to plot proba- bilities of a correct response. Normally these would be the output of qrs, and these are provided by default when x is NULL. However, the user may want to use something else, or pass the same qrs output to several plots (various calls to qrs provide slightly different output because of the random breaking of ties.)
item	The item for which a plot is requested (column of resp).
main	The main title of the plot.
use.sm	When TRUE, empirical data will be shown with a regression estimated by sm, otherwise the Bayes theorem will be used. Default is FALSE.

Details

Comparing the outputs of npp and irf has at least two drawbacks: (i) package sm is used as a black box, and (ii) the confidence intervals are drawn around the data (even though represented by the nonparametric regression) rather than the parametric curve. In this function, the parametric curve is shown in red, with a 68 The non-parametric curve representing the data is shown in black. It is computed by applying Bayes theorem to the density of ability. The standard error of the parametric curve is computed by applying the delta theorem on the standard error of the item parameters, as computed by the underlying software (currently only available with ICL).

Author(s)

Ivailo Partchev

See Also

irf, npp, tgf

Examples

a plot for item 5
irfPlot(Scored, ip=b3, item=4)

itf

Test item fit

Description

Returns a statistic of item fit together with its degrees of freedom and p-value. Optionally produces a plot.

Usage

```
itf(
  resp,
  ip,
  item,
  stat = "lr",
  theta,
  standardize = TRUE,
 mu = 0,
  sigma = 1,
  bins = 9,
  breaks = NULL,
  equal = "count",
  type = "means",
  do.plot = TRUE,
 main = "Item fit"
)
```

16

Arguments

resp	A matrix of responses: persons as rows, items as columns, entries are either 0 or 1, no missing data
ip	Item parameters: the object returned by est, or the equivalent of its first part.
item	A single number pointing to the item (column of resp, row of ip), for which fit is to be tested
stat	The statistic to be computed, either "chi" or "lr". Default is "lr". See details below.
theta	A vector containing some viable estimate of the latent variable for the same persons whose responses are given in resp. If not given (and group is also missing), WLE estimates will be computed from resp and ip.
standardize	Standardize the distribution of ability estimates?
mu	Mean of the standardized distribution of ability estimates
sigma	Standard deviation of the standardized distribution of ability estimates
bins	Desired number of bins (default is 9)
breaks	A vector of cutpoints. Overrides bins if present.
equal	Either "width" for bins of equal width, or "count" for bins with roughly counts of observations. Default is "quant"
type	The points at which itf will evaluate the IRF. One of "mids" (the mid-point of each bin), "meds" (the median of the values in the bin), or "means" (the mean of the values in the bin). Default is "means".
do.plot	Whether to do a plot
main	The title of the plot if one is desired

Details

Given a long test, say 20 items or more, a large-test statistic of item fit could be constructed by dividing examinees into groups of similar ability, and comparing the observed proportion of correct answers in each group with the expected proportion under the proposed model. Different statistics have been proposed for this purpose.

The chi-squared statistic

$$X^{2} = \sum_{g} \left(N_{g} \frac{(p_{g} - \pi_{g})^{2}}{\pi_{g}(1 - \pi_{g})} \right),$$

where N_g is the number of examinees in group g, $p_g = r_g/N_g$, r_g is the number of correct responses to the item in group g, and π_g is the IRF of the proposed model for the median ability in group g, is attributed by Embretson & Reise to R. D. Bock, although the article they cite does not actually mention it. The statistic is the sum of the squares of quantities that are often called "Pearson residuals" in the literature on categorical data analysis.

BILOG uses the likelihood-ratio statistic

$$X^{2} = 2\sum_{g} \left[r_{g} \log \frac{p_{g}}{\pi_{g}} + (N_{g} - r_{g}) \log \frac{(1 - p_{g})}{(1 - \pi_{g})} \right],$$

where π_q is now the IRF for the mean ability in group g, and all other symbols are as above.

Both statistics are assumed to follow the chi-squared distribution with degrees of freedom equal to the number of groups minus the number of parameters of the model (eg 2 in the case of the 2PL model). The first statistic is obtained in itf with stat="chi", and the second with stat="lr" (or not specifying stat at all).

In the real world we can only work with estimates of ability, not with ability itself. irtoys allows use of any suitable ability measure via the argument theta. If theta is not specified, itf will compute EAP estimates of ability, group them in 9 groups having approximately the same number of cases, and use the means of the ability eatimates in each group. This is the approximate behaviour of BILOG.

If the test has less than 20 items, itf will issue a warning. For tests of 10 items or less, BILOG has a special statistic of fit, which can be found in the BILOG output. Also of interest is the fit in 2- and 3-way marginal tables in package 1tm.

Value

A vector of three numbers:

Statistic	The value of the statistic of item fit
DF	The degrees of freedom
P-value	The p-value

Author(s)

Ivailo Partchev

References

S. E. Embretson and S. P. Reise (2000), Item Response Theory for Psychologists, Lawrence Erlbaum Associates, Mahwah, NJ

M. F. Zimowski, E. Muraki, R. J. Mislevy and R. D. Bock (1996), BILOG–MG. Multiple-Group IRT Analysis and Test Maintenance for Binary Items, SSI Scientific Software International, Chicago, IL

See Also

eap, qrs

Examples

fit <- itf(resp=Scored, ip=Scored2pl, item=7)</pre>

18

mlebme

Description

Estimates the value of the latent variable ("ability") for each person by direct optimization

Usage

mlebme(resp, ip, mu = 0, sigma = 1, method = "ML")

Arguments

resp	A matrix of responses: persons as rows, items as columns, entries are either 0 or 1, no missing data
ip	Item parameters: the object returned by est.
mu	Mean of the apriori distribution. Ignored when $method="ML"$. Default is 0.
sigma	Standard deviation of the apriori distribution. Ignored when ${\tt method="ML"}$. Default is 1.
method	"ML" for maximum likelihood or "BM" for Bayes Modal estimation. Default is "ML", in which case any values for mu and sigma will be ignored.

Value

A matrix with the ability estimates in column 1 and their standard errors of measurement (SEM) in column 2, and the number of non-missing responses in column 3

Author(s)

Ivailo Partchev

See Also

eap

Examples

th.mle <- mlebme(resp=Scored, ip=Scored2pl)</pre>

normal.qu

Description

Quadrature points and weights based on the Normal distribution. Quadrature objects are used when estimating abilities with eap and for some of the scaling methods in sca.

Usage

normal.qu(n = 15, lower = -4, upper = 4, mu = 0, sigma = 1, scaling = "points")

Arguments

n	Number of quadrature points
lower	Lower boundary
upper	Upper boundary
mu	Mean
sigma	Standard deviation
scaling	Determines the way in which non-default values of mu and sigma are applied. When scaling="points", the quadrature points are rescaled, otherwise the quadrature weights are adapted.

Value

A list of:	
quad.points	A vector of n quadrature points
quad.weights	A vector of the corresponding quadrature weights

Author(s)

Ivailo Partchev

See Also

read.qu.icl,eap,sca

Examples

quad <- normal.qu(n=20)</pre>

A plotting routine producing non-parametric analogues of the IRF not unlike those in Jim Ramsay's TestGraf program. The curves are produced by a kernel binomial regression of the actual responses to an item on some estimates of the latent variable, by courtesy of package sm.

Usage

```
npp(
  resp,
  x,
  items,
  from = -4,
  to = 4,
  co = 1,
  main = "Non-parametric response function",
  add = FALSE,
  bands = FALSE,
  label = FALSE
)
```

Arguments

resp	A matrix of responses: persons as rows, items as columns, entries are either 0 or 1, no missing data
x	The values of the latent variable ("ability") for the same persons whose re- sponses are given in resp. If not given, function qrs will be plugged in, which is the approach of TestGraf
items	An index to the items (columns of resp) to be shown on the plot. If not given, all items will be plotted.
from	Lower limit for ability on the plot. Default is -4.
to	Upper limit for ability on the plot. Default is 4.
со	The colour of the curves. Default is 1 for black. Use co=NA to plot each curve in a different colour.
main	The main title of the plot, given that add=F.
add	When add=T, the curve is added to a plot, otherwise a new plot is started. Default is F.
bands	When bands=T, confidence bands are added.
label	When label=T, individual curves will be labeled with the item number.

npp

Author(s)

Ivailo Partchev

References

James O. Ramsay (2000). TestGraf: A program for the graphical analysis of multiple choice test and questionnaire data. McGill University, Montreal, Canada

See Also

qrs, irf, plot.irf

Examples

```
# plot items 1:5 in different colours, label
npp(Scored, items=1:5, co=NA, label=TRUE)
```

For item 7, compare npp with the 2PL parametric IRF npp(Scored, items=7, bands=TRUE) plot(irf(ip=Scored2pl, items=7), co=3, add=TRUE)

plot.iif A plot method for item information function	ions
--	------

Description

Useful for plotting item information functions. The x argument of iif should better be left out unless something special is required.

Usage

```
## S3 method for class 'iif'
plot(
    x,
    add = FALSE,
    main = "Item information function",
    co = 1,
    label = FALSE,
    ...
)
```

Arguments

х	An object produced by function iif
add	When add=T, the IIF is added to a plot, otherwise a new plot is started. Default
	is F.

plot.imp

main	The main title of the plot, given that add=F.
со	The colour of the IIF curve. Default is 1 for black. Use co=NA to plot each IIF in a different colour.
label	When label=T, individual curves will be labeled with the item number.
	Any additional plotting parameters

Author(s)

Ivailo Partchev

See Also

iif

Examples

```
# plot IIF for all items in red, label with item number
plot(iif(Scored2pl), co="red", label=TRUE)
# plot IIF for items 2, 3, and 7 in different colours
plot(iif(Scored2pl, items=c(2,3,7)), co=NA)
```

plot.imp	A plot method for the interaction model	
proclimp	A plot memou jor the interaction model	

Description

Plot the item-total regressions fit by the interaction (or Rasch) model

Usage

```
## S3 method for class 'imp'
plot(
    x,
    items = NULL,
    shade = 10,
    highlight = -Inf,
    add = FALSE,
    main = "Item-total regression",
    label = FALSE,
    ...
)
```

Arguments

х	An object produced by function interactionModel
items	The items to plot (column numbers). If NULL, all items will be plotted
shade	The part of the probability mass for the sum scores to shade out, shown as per- centage. Default is 10: shade the most extreme 10 Ignored when add=TRUE.
highlight	Cutpoint for the interaction parameter below which a regression line will be highlighted in red. Default is -Inf (do not highlight).
add	When add=TRUE, the graph is added to a plot, otherwise a new plot is started. Default is FALSE.
main	The main title of the plot, given that add=FALSE.
label	When label=TRUE, individual curves will be labeled with the item number.
	Any additional plotting parameters

Author(s)

Ivailo Partchev, using theory and C code by Gunter Maris

See Also

interactionModel

Examples

plot(interactionModel(Scored), highlight=-.3)

plot.irf

A plot method for item response functions

Description

Useful for plotting item response functions. The x argument of irf should better be left out unless something special is required.

Usage

```
## S3 method for class 'irf'
plot(
    x,
    add = FALSE,
    main = "Item response function",
    co = 1,
    label = FALSE,
    ...
)
```

plot.tif

Arguments

х	An object produced by function irf
add	When add=T, the IRF is added to a plot, otherwise a new plot is started. Default
	is F.
main	The main title of the plot, given that add=F.
со	The colour of the IRF curve. Default is 1 for black. Use co=NA to plot each IRF in a different colour.
label	When label=T, individual curves will be labeled with the item number.
	Any additional plotting parameters

Author(s)

Ivailo Partchev

See Also

irf

Examples

```
# plot IRF for all items in red, label with item number
plot(irf(Scored2pl), co="red", label=TRUE)
# plot IRF for items 2, 3, and 7 in different colours
plot(irf(Scored2pl, items=c(2,3,7)), co=NA)
```

plot.tif

```
A plot method for test information functions
```

Description

Useful for plotting test information functions. The x argument of tif should better be left out unless something special is required.

Usage

```
## S3 method for class 'tif'
plot(x, add = FALSE, main = "Test information function", co = 1, ...)
```

Arguments

х	An object produced by function tif
add	When add=T, the TIF is added to a plot, otherwise a new plot is started. Default is F.
main	The main title of the plot, given that add=F.
со	The colour of the TIF curve. Default is 1 for black. Use co=NA to plot each TIF in a different colour.
	Any additional plotting parameters

Author(s)

Ivailo Partchev

See Also

tif

Examples

plot(tif(Scored2pl))

plot.trf

A plot method for test response functions

Description

Useful for plotting test response functions. The x argument of trf should better be left out unless something special is required.

Usage

S3 method for class 'trf'
plot(x, add = FALSE, main = "Test response function", co = 1, ...)

Arguments

х	An object produced by function trf
add	When add=T, the IRF is added to a plot, otherwise a new plot is started. Default is F.
main	The main title of the plot, given that add=F.
со	The colour of the TRF curve. Default is 1 for black. Use co=NA to plot each TRF in a different colour.
	Any additional plotting parameters

Author(s)

Ivailo Partchev

See Also

trf

Examples

plot(trf(Scored2pl))

26

A rough estimate of the values of the latent variable ("ability"). The sum scores (number of correct responses) are ranked, breaking ties at random. The ranks are divided by the sample size + 1, and the corresponding quantiles of the standard Normal distribution are returned. Used as default in the non-parametric IRF plots produced by npp in analogy to Jim Ramsay's TestGraf. Another possible use is in itf.

Usage

qrs(resp)

Arguments

resp	A matrix of responses: persons as rows, items as columns, entries are either 0 or
	1, no missing data

Value

A one-column matrix of values

Author(s)

Ivailo Partchev

See Also

npp, itf

Examples

sc <- qrs(Scored)</pre>

qrs

read.ip.bilog

Description

From BILOG output, read in estimates of item parameters. Invoked automatically when the model is estimated via irtoys. If that is not the case, file must be a file produced with the >SAVE PARm file; command in BILOG.

Usage

read.ip.bilog(file)

Arguments

file File name

Value

A list with three elements, est, se, vcm for the parameter estimates, their standard errors, and the variance-covariance matrix per item. The first two are matrices with one row per item, and three columns: [,1] item discrimination a, [,2] item difficulty b, and [,3] asymptote c. For the 1PL and 2PL models, all asymptotes are equal to 0; for the 1PL, the discriminations are all equal but not necessarily equal to 1.

Author(s)

Ivailo Partchev

read.ip.icl Read in parameter estimates

Description

From ICL output, read in estimates of item parameters. Invoked automatically when the model is estimated via irtoys. If that is not the case, file must be a file produced with the write_item_param file command in ICL.

Usage

read.ip.icl(file)

Arguments

file File name

read.qu.icl

Value

A list with three elements, est, se, vcm for the parameter estimates, their standard errors, and the variance-covariance matrix per item. Because ICL does not compute standard errors, se and vcm will be NULL. est is a matrix with one row per item, and three columns: [,1] item discrimination a, [,2] item difficulty b, and [,3] asymptote c. For the 1PL and 2PL models, all asymptotes are equal to 0; for the 1PL, the discriminations are all equal but not necessarily equal to 1.

Author(s)

Ivailo Partchev

read.qu.icl Read in quadrature

Description

From ICL output, read in estimates of item parameters. file must be a file produced with the write_latent_dist file command in ICL. Quadrature objects are used when estimating abilities with eap and for some of the scaling methods in sca.

Usage

read.qu.icl(file)

Arguments

file File name

Value

A list of:

quad.points	A vector of quadrature points
quad.weights	A vector of the corresponding quadrature weights

Author(s)

Ivailo Partchev

See Also

normal.qu, eap, sca

read.resp

Description

Reads responses to a questionnaire from a text file

Usage

read.resp(file, na = ".")

Arguments

file	File name
na	The symbol used to represent missing data

Details

Included for those who are too faint-hearted to write as.matrix(read.table(file, head=F)). Of course, data can be entered into R in many other ways.

The data values in the file must be separated with blanks.

Responses are the empirical data used in IRT. Note that irtoys deals with models for dichotomous data, and typically expects data consisting of zeroes and ones, without any missing values (non-responses are considered as wrong responses). In fact, there are only two commands in irtoys that accept other kinds of data: sco and tgf.

read.resp does accept missing data and values other than 0 and 1. Use sco and a key to score multiple choice responses to 0/1. If you have dichotomous data that contains NAs, you can use sco without a key to change all NA to 0.

Value

A matrix, typically of zeroes and ones, representing the correct or wrong responses given by persons (rows) to items (columns).

Author(s)

Ivailo Partchev

See Also

sco, tgf,

rim

Examples

```
## Not run:
  r <- read.resp("c:/myfiles/irt.dat")
## End(Not run)
```

rim

Item-total regressions for the Rasch vs. the interaction model

Description

Compare the item-total regressions fit by the Rasch model and the interaction model, for one, several, or all items in the test.

Usage

rim(x, items = NULL, showData = FALSE, shade = 10, ncol = 3, ...)

Arguments

х	A matrix of scored responses (persons in rows, items in columns)
items	The items to plot (column numbers). If NULL, all items will be plotted
showData	If TRUE, the observed proportion correct at each sum score will be shown on the plot. Default is FALSE (show only the regressions)
shade	The part of the probability mass for the sum scores to shade out, shown as per- centage. Default is 10: shade the most extreme 10 Ignored when add=TRUE.
ncol	When plotting multiple items, the user can suggest the number of columns in the matrix of plots (up to 3, will be adjusted if necessary)
	Any additional plotting parameters

Author(s)

Ivailo Partchev, using theory and C code by Gunter Maris

See Also

interactionModel

Examples

rim(Scored, items=2)

Linearly transform a set of IRT parameters to bring them to the scale of another set of parameters. Four methods are implemented: Mean/Mean, Mean/Sigma, Lord-Stocking, and Haebara.

Usage

```
sca(
    old.ip,
    new.ip,
    old.items,
    new.items,
    old.qu = NULL,
    new.qu = NULL,
    method = "MS",
    bec = FALSE
)
```

Arguments

old.ip	A set of parameters that are already on the desired scale
new.ip	A set of parameters that must be placed on the same scale as old.ip
old.items	A vector of indexes pointing to those items in old.ip that are common to both sets of parameters
new.items	The indexes of the same items in new.ip
old.qu	A quadrature object for old.ip, typically produced by the same program that estimated old.ip. Only needed if method="LS" or method="HB"
new.qu	A quadrature object for new.ip, typically produced by the same program that estimated new.ip. Only needed if method="HB" $$
method	One of "MM" (Mean/Mean), "MS" (Mean/Sigma), "SL" (Stocking-Lord), or "HB" (Haebara). Default is "MS"
bec	Use back-equating correction? When TRUE, the Stocking-Lord or Hebaera procedures will be adjusted for back-equating (see Hebaera, 1980). Ignored when method is MM or MS. Default is FALSE.

Value

A list of:	
slope	The slope of the linear transformation
intercept	The intercept of the linear transformation
scaled.ip	The parameters in new.ip tranformed to a scale that is compatible with old.ip

sca

sco

Author(s)

Ivailo Partchev and Tamaki Hattori

References

Kolen, M.J. & R.L. Brennan (1995) Test Equating: Methods and Practices. Springer.

Haebara, T. (1980) Equating logistic ability scales by a weighted lest squares method. Japanese Psychological Research, 22, p.144–149

Examples

```
## Not run:
# a small simulation to demonstrate transformation to a common scale
# fake 50 2PL items
pa <- cbind(runif(50,.8,2), runif(50,-2.4,2.4), rep(0,50))</pre>
# simulate responses with two samples of different ability levels
r.1 <- sim(ip=pa[1:30,], x=rnorm(1000,-.5))
r.2 <- sim(ip=pa[21:50,], x=rnorm(1000,.5))
# estimate item parameters
p.1 <- est(r.1, engine="ltm")</pre>
p.2 <- est(r.2, engine="ltm")</pre>
# plot difficulties to show difference in scale
plot(c(-3,3), c(-3,3), ty="n", xlab="True",ylab="Estimated",
   main="Achieving common scale")
text(pa[1:30,2], p.1$est[,2], 1:30)
text(pa[21:50,2], p.2$est[,2], 21:50, co=2)
# scale with the default Mean/Sigma method
pa.sc = sca(old.ip=p.1$est, new.ip=p.2$est, old.items=21:30, new.items=1:10)
# add difficulties of scaled items to plot
text(pa[21:50,2], pa.sc$scaled.ip[,2], 21:50, co=3)
```

End(Not run)

SCO

Score a multiple choice test

Description

Given a key, score a multiple choice test, i.e. recode the original choices to right (1) or wrong (0). Missing responses are treated as wrong.

Usage

sco(choices, key, na.false = FALSE)

Arguments

choices	The original responses to the items in the test: persons as rows, items as columns. May contain NA.
key	A vector containing the key (correct answers) to the items in choices. If not given, the function will check if all data are either 0, 1, or NA: if yes, NA are recoded as 0, else an error message is returned.
na.false	Recode non-responses to false responses?

Value

A matrix of responses scored 0=wrong 1=correct, and possibly NA

Author(s)

Ivailo Partchev

Examples

res <- sco(Unscored, key=c(2,3,1,1,4,1,2,1,2,3,3,4,3,4,2,2,4,3))

Scored

Binary (true/false) responses to a test

Description

Real-life data set containing the responses to a test, scored as true or false.

Format

A data set with 472 persons and 18 items.

Scored2pl

Example item parameters

Description

Item parameter estimates for the 2PL model, estimated with 1tm from the example data set Scored. These are provided as a check, and to speed up the examples for the various functions in the package.

Format

The object returned by est

scoreMetric

Description

From a set of estimated item parameters, compute an item response function in sum score metric, i.e., the probabilities of a correct response predicted by the model at abilities corresponding to the possible (raw) sum scores.

Usage

```
scoreMetric(ip)
```

Arguments

ip

Item parameters: the output of est, or a 3-column matrix corresponding to its first element, est.

Value

An object with the same structure as the output of irf

Author(s)

Ivailo Partchev

scp

Plot observed and predicted scores against ability

Description

Produces a plot of IRT true scores (test response function at the estimated ability) with a confidence band (plus/minus standard error). The observed sum scores are shown in red.

Usage

scp(resp, ip, theta = NULL)

Arguments

resp	A matrix of binary responses to a test, with persons as rows and items as columns.
ip	Item parameters: the output of est, or a 3-column matrix corresponding to its first element, est.
theta	An object containing ability estimates, as output by function mlebme or eap. If NULL, MLE will be estimated from resp and ip.

36

Value

None

Author(s)

Ivailo Partchev

See Also

mlebme, eap, tsc, trf

Examples

scp(Scored, Scored2pl)

sim

Simulate response data

Description

Simulate responses from the 1PL, 2PL, or 3PL model

Usage

sim(ip, x = NULL)

Arguments

ip	Item parameters: a matrix with one row per item, and three columns: [,1] item
	discrimination a, [,2] item difficulty b, and [,3] asymptote c. Can also use the
	object returned by est.
x	A vector of values of the latent variable ("abilities").

Value

A matrix of responses: persons as rows, items as columns, entries are either 0 or 1, no missing data

Author(s)

Ivailo Partchev

Examples

```
pa <- cbind(runif(20,.8,2), runif(20,-2.4,2.4), rep(0,50))
rs <- sim(ip=pa, x=rnorm(1000))</pre>
```

sim

Matrix of tetchoric correlations using the approximation by Bonett and Price (2005).

Usage

tet(d)

Arguments

d

a matrix (or data frame, which will be converted to a matrix) containing only zeroes an ones. NAs are not allowed.

Value

A matrix of approximate tetchoric correlations.

Author(s)

Ivailo Partchev

References

Douglas G. Bonett and Robert M. Price (2005). Inferential Methods for the Tetrachoric Correlation Coefficient. Journal of Educational and Behavioral Statistics, Vol. 30, No. 2, pp. 213–225

Examples

tets <- tet(Scored)</pre>

tgf

Non-parametric option curves

Description

A plotting function producing non-parametric analogues of the IRF for each option in a multiple choice item not unlike those in Jim Ramsay's TestGraf program.

tet

tgf

Usage

```
tgf(
  choices,
  key,
  item,
  main = "Non-parametric response function",
  co = 1,
  label = FALSE
)
```

Arguments

1s.
;
e

Author(s)

Ivailo Partchev

References

James O. Ramsay (2000). TestGraf: A program for the graphical analysis of multiple choice test and questionnaire data. McGill University, Montreal, Canada

See Also

qrs, irf, plot.irf

Examples

```
key=c(2,3,1,1,4,1,2,1,2,3,3,4,3,4,2,2,4,3)
tgf(choices=Unscored, key=key, item=4, co=NA, label=TRUE)
```

38

Elementary analysis of the items in a test and the test sumscores based on Classical Test Theory.

Usage

tia(choices, key, ...)

Arguments

choices	The original responses to the items in the test: persons as rows, items as columns. May contain NA.
key	A vector containing the key (correct answers) to the items in choices. If not given, the function will check if all data are either 0, 1, or NA: if yes, NA are recoded as 0, else an error message is returned.
	Other parameters that may be passed to sco or cov

Value

A list with three elements:

- **testlevel** A list of statistics at test level (currently, only Cronbach's alpha, may be extended in future)
- **itemlevel** A matrix showing, for each item, the proportion of correct responses, the correlation with the sum score, and the alpha that the test would have if the item were dropped.
- **optionlevel** A matrix showing, for each possible choice in the multiple-choice item, the proportion of responses given, and the correlation with the sum score for the test (including the item). The correct response is highlighted with asterisks.

Author(s)

Ivailo Partchev

Examples

```
itemsum <- tia(Unscored, key=c(2,3,1,1,4,1,2,1,2,3,3,4,3,4,2,2,4,3))
```

tia

Returns the test information function (TIF) of the 3PL (1PL, 2PL) model. The TIF is the sum of the item information functions (IIF) in a test, and indicates the precision of measurement that can be achieved with the test at any value of the latent variable, bein inversely related to measurement variance.

Usage

tif(ip, x = NULL)

Arguments

ip	Item parameters: the output of est.
x	The values of the latent variable (θ in the equation above), at which the TIF will be evaluated. If not given, 99 values spaced evenly between -4 and +4 will be used, handy for plotting.

Details

A common use of this function would be to obtain a plot of the TIF.

Value

A list of:	
x	A copy of the argument x
f	A vector containing the TIF values

Author(s)

Ivailo Partchev

See Also

plot.tif, iif

Examples

plot(trf(Scored2pl))

tif

Returns the test response function (TRF) of the 3PL (1PL, 2PL) model. The TRF is the sum of the item response functions (IRF) in a test, and represents the expected score as a function of the latent variable θ .

Usage

trf(ip, x = NULL)

Arguments

ip	Item parameters: the output of est, or a 3-column matrix corresponding to its first element, est.
x	The values of the latent variable (θ in the equation above), at which the IRF will be evaluated. If not given, 99 values spaced evenly between -4 and +4 will be
	used, handy for plotting.

Details

A common use of this function would be to obtain a plot of the TRF.

Value

A list of:	
x	A copy of the argument x
f	A vector containing the TRF values

Author(s)

Ivailo Partchev

See Also

plot.trf, irf

Examples

plot(trf(Scored2pl))

trf

Computes the IRT true scores (test response function at the estimated ability) and an estimate of their standard error via the delta theorem, treating item parameters as known).

Usage

tsc(ip, theta)

Arguments

ip	Item parameters: the output of est, or a 3-column matrix corresponding to its first element, est.
theta	An object containing ability estimates, as output by function mlebme or eap

Value

A matrix with the true scores in column 1, and their standard errors of measurement (SEM) in column 2

Author(s)

Ivailo Partchev

See Also

mlebme, eap, trf

Examples

```
th <- mlebme(resp=Scored, ip=Scored2pl)
tsc(Scored2pl, th)</pre>
```

tsc

43

Unscored

Description

Real-life data set containing the responses to a test, before they have been recoded as true or false. Can be used with only two functions in the package: scoreResponses and tgf. All other functions expect binary data, which can be produced with scoreResponses.

Format

A data set with 472 persons and 18 items. Each item has 4 possible answers, of which only one is true. There are many NA, which can be treated as wrong responses.

wle

Bias-corrected (Warm's) estimates of ability

Description

Weighted likelihood estimates (WLE) of ability, designed to remove the first order bias term from the ML estimates. WLE are finite for response patterns consisting of either uniformly wrong or uniformly correct responses.

Usage

wle(resp, ip)

Arguments

resp	A matrix of responses: persons as rows, items as columns, entries are either 0 or 1, no missing data
ip	Item parameters: the object returned by est.

Value

A matrix with the ability estimates in column 1, and their standard errors of measurement (SEM) in column 2, and the number of non-missing reponses in column 3

Author(s)

Ivailo Partchev

References

Warm T.A. (1989) Weighted Likelihood Estimation of Ability in Item Response Theory. Psychometrika, 54, 427-450.

See Also

mlebme, eap

Examples

th.bce <- wle(resp=Scored, ip=Scored2pl)</pre>

Index

* **IO** read.resp, 30 * datasets b1, 6 b2, 6 b3, 6 Scored, 34 Scored2p1, 34 Unscored, 43 * data read.ip.bilog, 28 * models ability, 4 api, 5 dpv, 7 eap, 8 erf,9 est. 9 iif, 12 interactionModel, 13 irf, 14 irtoys-package, 3 itf, 16 mlebme, 19 normal.qu, 20npp, 21 plot.iif, 22 plot.imp, 23 plot.irf, 24 plot.tif, 25 plot.trf, 26 grs, 27 read.ip.icl, 28 read.qu.icl, 29 rim, 31 sca, 32 sco, 33 scoreMetric, 35 scp, 35

sim, 36 tet, 37 tgf, 37 tia, 39 tif, 40 trf, 41 tsc, 42 wle, 43ability, 4 api, 5 b1, 6 b2.6 b3, 6 dpv, 5, 7 eap, 5, 7, 8, 18-20, 29, 36, 42, 44 erf,9 est, 9 iif, 12, 23, 40 interactionModel, 13, 24, 31 irf, 13, 14, 16, 22, 25, 38, 41 irfPlot, 15 irtoys (irtoys-package), 3 irtoys-package, 3 itf, 16, 27 mlebme, 5, 7, 8, 19, 36, 42, 44 normal.qu, 8, 20, 29 npp, 16, 21, 27 plot.iif, 13, 22 plot.imp, 23 plot.irf, *15*, *22*, *24*, *38* plot.tif, 25, 40 plot.trf, 26, 41 qrs, 5, 18, 22, 27, 38

INDEX

read.ip.bilog, 28 read.ip.icl, 28 read.qu.icl, 8, 20, 29 read.resp, 30rim, 31 sca, 20, 29, 32 sco, *30*, 33 Scored, 34 Scored2pl, 34 scoreMetric, 35scp, 35 sim, <mark>36</mark> tet, <mark>37</mark> tgf, *16*, *30*, 37 tia,<mark>39</mark> tif, *26*, 40 trf, 26, 36, 41, 42 tsc, *36*, 42 ${\tt Unscored}, {\tt 43}$ wle, 5, 43

46